Miniaturized load sensor using quartz crystal resonator constructed through microfabrication and bonding

نویسندگان

  • Yuichi Murozaki
  • Kousuke Nogawa
  • Fumihito Arai
چکیده

Highly sensitive, wide-measurement-range compact load sensors are desirable for various applications, including measurement of biosignals, manipulation and stiffness measurement of cells, and so on. Conventional load sensors are highly sensitive but have relatively small measurement ranges. A load sensor using an AT-cut quartz crystal resonator (QCR) has superior characteristics such as, high accuracy, improved strength under compressive stress, long-term stability, and compact size. However, a retention mechanism is required to firmly support the QCR because the QCR is easily broken by stretching and bending motions. Conventional machining processes are not suitable for further miniaturization of the sensor. Even if the retention mechanism were miniaturized, the assembly process is complicated. In this paper, we propose a novel design and fabrication method for a load sensor using the QCR. Using microfabrication and bonding, the assembly process was simplified. We demonstrate the feasibility of a miniaturized QCR load sensor whose volume is 24.6 mm (width is 4 mm, height is 5.6 mm, depth is 1.1 mm). The experimental results showed that the nonlinearity and hysteresis were 0.94% F.S. and 1.68% F.S., respectively. Additionally, sensitivity of the sensor was 1458 Hz/N. We improved the sensitivity and stability of the sensor; the fluctuation was 0.04 mN over a period of 1 min. Moreover, the effects of the temperature change were evaluated. The temperature and the sensor output were linear within the range of 20°C–50°C.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study on Fabricating an Inverted Mesa-Type Quartz Crystal Resonator Using a Cheap Wet Etching Process

In this study, a miniaturized high fundamental frequency quartz crystal microbalance (QCM) is fabricated for sensor applications using a wet etching technique. The vibration area is reduced in the fabrication of the high frequency QCM with an inverted mesa structure. To reduce the complexity of the side wall profile that results from anisotropic quartz etching, a rectangular vibration area is u...

متن کامل

Improvement of the Measurement Range and Temperature Characteristics of a Load Sensor Using a Quartz Crystal Resonator with All Crystal Layer Components

Monitoring multiple biosignals, such as heart rate, respiration cycle, and weight transitions, contributes to the health management of individuals. Specifically, it is possible to measure multiple biosignals using load information obtained through contact with the environment, such as a chair and bed, in daily use. A wide-range load sensor is essential since load information contains multiple b...

متن کامل

A High Fundamental Frequency Quartz Crystal Biosensor Integrated into an Electro-wetting-on-dielectrics Based Lab-on-a-chip

We demonstrate the operation of an Electro Wetting on Dielectrics (EWOD) hybrid lab-on-a-chip system by utilizing a Quartz Crystal Microbalance (QCM) resonator as mass-sensitive sensor. We have tested the formation of a phosphorlipid monolayer out of an aqueous buffer suspension onto the integrated sensor. The altered mass load resulted in a shift of the resonance frequencies. Subsequently, the...

متن کامل

Flip Chip Bonding of a Quartz MEMS-Based Vibrating Beam Accelerometer

In this study, a novel method to assemble a micro-accelerometer by a flip chip bonding technique is proposed and demonstrated. Both the main two parts of the accelerometer, a double-ended tuning fork and a base-proof mass structure, are fabricated using a quartz wet etching process on Z cut quartz wafers with a thickness of 100 μm and 300 μm, respectively. The finite element method is used to s...

متن کامل

A Highly Sensitive Humidity Sensor Based on Ultrahigh-Frequency Microelectromechanical Resonator Coated with Nano-Assembled Polyelectrolyte Thin Films

We developed a highly sensitive humidity sensor based on the combination of ultrahigh-frequency film bulk acoustic resonator (FBAR) and nano-assembled polyelectrolyte (PET) thin films. The water molecule absorption efficiency was optimized by forming loosely-packed PET nanostructures. Then, the humidity sensing characteristics were analyzed in terms of sensitivity, linearity, reversibility, sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014